孔艳强

  姓名:孔艳强

  技术职务:讲师

  办公地点:C201

  办公电话:130-5127-4409

  通讯地址:华北电力大学主C201

  电子邮件:k@ncepu.edu.cn

教育背景

2008/9~2012/6 东北电力大学,学士;

2014/9~2018/6 华北电力大学,硕士

工作履历

2020~至今 华北电力大学能源动力与机械工程学院,讲师

研究方向

电站冷端节能优化、太阳能光热利用、光催化

主持科研项目

1.国家自然科学基金青年科学基金项目, 太阳能粒子吸热器光热耦合动态热输运特性与调控机制, 51906065, 2020/01-2022/12, 26万元;

2.博士后创新人才支持计划项目, BX20180098, 2019/01-2021/12, 20万元;

3.中国博士后科学基金面上一等资助, 非均匀时变能流下太阳粒子吸热器光热转换机理研究, 2018M640102, 2019/01-2021/12, 8万元;

奖励与荣誉

入选华北电力大学硕士生导师2019

华北电力大学创新人才支持与培育计划(2019

博士后创新人才支持计划(2018

吴仲华优秀研究生奖(2017

华北电力大学优秀博士学位论文(2017

华北电力大学校长奖学金(2017

北京市优秀毕业生(2018

华北电力大学优秀毕业生(2018

博士研究生国家奖学金2次(2016)(2017

博士研究生优秀博士奖学金3次(2015)(2016)(2017

华北电力大学十佳学术之星(2017

全国大学生足球联赛冠军(2017

华北电力大学优秀班干部(2017

东北电力大学优秀毕业生(2012

代表性论文专著

1.Effects of continuous and alternant rectangular slots on thermo-flow performances of plain finned tube bundles in in-line and staggered configurations. International Journal of Heat and Mass Transfer, 2016(93):97-1007.( SCI/Top)

2. Impacts of geometric structures on thermo-flow performances of plate fin-tube bundles. International Journal of Thermal Sciences, 2016(107):161-178. (SCI)

3. Air-side flow and heat transfer characteristics of flat and slotted finned tube bundles with various tube pitches. International Journal of Heat and Mass Transfer, 2016(99):357-371. (SCI/Top)

4. Direct dry cooling system through hybrid ventilation for improving cooling efficiency in power plants. Applied Thermal Engineering, 2017(119):254-268. (SCI/Top)

5. Circularly arranged air-cooled condensers to restrain adverse wind effects. Applied Thermal Engineering, 2017(124):202-223. (SCI/Top)

6. Annularly arranged air-cooled condensers to improve cooling efficiency of natural draft direct dry cooling system. International Journal of Heat and Mass Transfer, 2018(118):587-601. (SCI/Top)

7. Wind flow leading to improve cooling performance of natural draft air-cooled condenser. Applied Thermal Engineering, 2018(136):63-83. (SCI/Top)

8. Thermo-flow performances of natural draft direct dry cooling system at ambient winds. International Journal of Heat and Mass Transfer, 2018(116): 173-184. (SCI/Top)

9. Combined air-cooled condenser layout with in line configured finned tube bundles to improve cooling performance. Applied Thermal Engineering, 2019(154): 505-518. (SCI/Top)

10. A novel natural draft dry cooling system with bilaterally arranged air-cooled heat exchanger. International Journal of Thermal Science, 2017(112):318-334. (SCI)

11. Influencing Mechanisms of a Crosswind on the Thermo-Hydraulic Characteristics of a Large-Scale Air-Cooled Heat Exchanger. Energies, 2019(12), 1128. (SCI)

12. Energy efficient strategies for anti-freezing of air-cooled heat exchanger. Applied Energy, 2020(261),114468. (SCI/Top)

13. Full-Reference IPTV image quality assessment by deeply learning structural cues. Signal processing: Image communication. 2020(83),115779. (SCI)

14. Water redistribution among various sectors to avoid freezing of air-cooled heat exchanger. International Journal of Heat and Mass Transfer, 2019(141): 294-309. (SCI/Top)

15. 600MW间接空冷系统散热器传热及防冻性能研究.中国工程热物理学报, 2015(36):1785-1789. EI

16. Unstructured big data analysis algorithm and simulation of Internet of Things based on machine learning. Neural Computing and Applications. https://doi.org/10.1007/s00521-019-04682-z. (SCI)

17. Cooling performance evaluation for double-layer configuration of air-cooled heat exchanger. International Journal of Heat and Mass Transfer, 2020(151):119396. (SCI/Top)

18. Anti-freezing prediction model for different flow patterns of air-cooled heat exchanger. International Journal of Heat and Mass Transfer, 2020(153)119656. (SCI/Top)

19. Anti-freezing performance and application of air-cooled heat exchanger with different water entry patterns. Applied Thermal Engineering, Accepted, 2020. (SCI/Top)

招生信息

硕士研究生